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Summary

In order to understand the electricity use of Internet services, it is important to have accurate
estimates for the average electricity intensity of transmitting data through the Internet
(measured as kilowatt-hours per gigabyte [kWh/GB]). This study identifies representative
estimates for the average electricity intensity of fixed-line Internet transmission networks
over time and suggests criteria for making accurate estimates in the future. Differences in
system boundary, assumptions used, and year to which the data apply significantly affect
such estimates. Surprisingly, methodology used is not a major source of error, as has been
suggested in the past. This article derives criteria to identify accurate estimates over time and
provides a new estimate of 0.06 kWh/GB for 2015. By retroactively applying our criteria to
existing studies, we were able to determine that the electricity intensity of data transmission
(core and fixed-line access networks) has decreased by half approximately every 2 years
since 2000 (for developed countries), a rate of change comparable to that found in the
efficiency of computing more generally.

Keywords:

electricity intensity
energy
industrial ecology
information and communication

technology (ICT)
Internet
meta-analysis

Supporting information is linked
to this article on the JIE website

Introduction

Global Internet data traffic has increased more than fivefold
since 2010 and continues to grow, with some predictions sug-
gesting threefold growth over the next 5 years (Cisco 2015).
This growth is driven by increasing number of connected de-
vices, expected to reach 28 billion by 2020 (Ericsson 2016), and
increasing use of digital and cloud-based services. For example,
in 2012, consumption of online movies overtook sales of DVDs
and Blu-rays in the United States, on a per-unit basis (Cryan
2012).
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With rapid growth in Internet use, concern has arisen over
the electricity consumption of Information and Communica-
tion Technology (ICT). It is estimated that ICT products and
services accounted for 3.9% of world-wide electricity consump-
tion in 2007, increasing to 4.6% in 2012 (Heddeghem et al.
2014). As a result, policy makers have focused attention on in-
creasing the energy efficiency of Internet networks. For exam-
ple, a recent International Energy Agency (IEA) report stated
that the development of energy efficiency metrics was one of
three key considerations required for effective policy making to
reduce the energy use of networks (IEA 2014).
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There have been several attempts to estimate the electricity
intensity of Internet data transmission, which is defined as the
electrical “energy consumed per amount of data transmitted”
(Coroama et al. 2013, 2). Electricity intensity is a measure for
assessing the efficiency of data transmission through the In-
ternet over time. This study focuses on the average electricity
intensity, rather than specific or marginal estimates, as the aver-
age has more application potential, representing the historical
measure of electricity used to transmit data.

Electricity intensity of Internet data transmission is often
used in life cycle assessment (LCA) research to estimate the
carbon-equivalent emissions arising from Internet use. For ex-
ample, Mayers and colleagues (2014) applied electricity in-
tensity estimates as part of an LCA study comparing different
methods of games distribution, concluding that the carbon-
equivalent emissions arising from an Internet game download
(for an average 8.8-gigabyte [GB] game) were higher than those
from Blu-ray Disc distribution in 2010. Within LCA stud-
ies, electricity intensity of Internet data transmission is typi-
cally calculated as a ratio of total electricity use and total data
throughput, similar to the way in which carbon emissions are
allocated for transport networks and electricity generation and
transmission.

Existing estimates for the electricity intensity of Internet
data transmission, for 2000 to 2015, vary up to 5 orders of mag-
nitude, ranging from between 136 kilowatt-hours (kWh)/GB
in 2000 (Koomey et al. 2004) and 0.004 kWh/GB in 2008
(Baliga et al. 2009). While increased efficiency over time can
account for 2 orders of magnitude of this variation (based on
results presented below), alone it does not explain the spread
of results. Differences in the system boundary of each study and
the assumptions applied also can cause variability (Schien and
Preist 2014; Coroama and Hilty 2014). Additionally, Schien
and Preist (2014) suggest that the approach used can introduce
a significant source of uncertainty, classified as either top-down
or bottom-up:

� Top-down: Network/subsystem level total electricity con-
sumption, divided by total data transferred through net-
work/subsystem (summed to find total).

� Bottom-up: Sum of electricity consumption, typically at
the level of individual equipment, divided by the data
transferred through the equipment (often requiring ap-
plication of utilization factors).

So-called top-down approaches have been criticized for
overestimating electricity intensity, whereas bottom-up ap-
proaches have been considered to underestimate electricity
intensity (Schien and Preist 2014). Nevertheless, there ap-
pears to be uncertainty over which estimates best reflect real-
world/mean data transmission (we will refer to such estimates as
“representative”).

Accurate and representative estimates for the electricity in-
tensity of Internet data transmission are required for effective
research and also for effective decision making by policy mak-
ers and industry interested in improving the energy efficiency
of network technologies (IEA 2014). This study is concerned

with Internet networks in developed countries, the character-
istics (and therefore electricity intensity) of which tend to be
more comparable across countries and better understood than
networks in developing countries.

This study undertakes a meta-analysis to identify the most
accurate estimates of average electricity intensity for data trans-
mitted over the Internet to:

� Understand current approaches for estimating electricity
intensity of Internet data transmission;

� Establish criteria to identify the most robust approaches
and representative existing estimates; and

� Highlight potential underlying trends that may describe
characteristics of Internet data transmission, for example,
rapid improvements in electricity efficiency over time.

Methodology

Electricity intensity is measured in kWh/GB or joules per bit
transmitted. We reviewed 14 studies providing estimates of elec-
tricity intensity, converted them to common units of kWh/GB
and then tabulated them chronologically. Average electricity
intensity of transmission networks is an important metric for
use in life cycle assessments evaluating the carbon emissions
of Internet services. LCA studies usually depend upon aver-
age energy intensity to calculate impact of background systems
such as in transport networks and electricity production and
transmission, which are examples of attributional allocation ap-
proaches (EC 2010). Coroama and colleagues (2015) argue that
electricity use of access networks and home/on-site networking
equipment should be allocated by the time used and not data,
as the electricity use does not vary with data volume. Never-
theless, Internet usage varies daily, as discussed previously, and
access networks and home/on-site networking equipment are
provisioned to handle peak capacity at all times. The electric-
ity use for these subsystems is a function of both data volume
and time, creating a problem on how to best allocate electricity
use to different levels of Internet activity. In accordance with
estimates from existing studies, data are presented in kWh/GB
in order to fully account for the overall energy use of Internet
data transmission in previous years.

The Internet is a large and complex system, often simplified
into subsystems such as in figure 1 and table 1.

We grouped the results by Internet subsystem (according to
definitions in table 1), to evaluate the impact of differing sys-
tem boundaries on variability of estimates. Across the 14 stud-
ies, estimates were derived from eight different combinations
of subsystems. We therefore recalculated estimates to represent
a common system boundary (see figure 1), including the In-
ternet Protocol (IP) core network and access networks only,
which we refer to as the “transmission network.” This system
boundary was chosen as it represents the network of equipment
used for data transmission and access at a national level. The
electricity intensity of the transmission network is independent
of the data type; for example, media streaming, financial trans-
actions, e-mail, etc. The electricity intensity of user devices
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Figure 1 Simplified Internet structure diagram, showing scale over which key processes operate. The dotted box represents the common
system boundary (for data transmission) selected for this study.

Table 1 List of Internet subsystems with descriptions and equipment examples

Subsystem Description Equipment examples

Data centers

Buildings housing servers used to carry out a large variety of
functions (e.g., e-mail, financial transactions, social media,
etc.) and store data. Data centers often require air
conditioning units, power supply units, and other technologies
to support these computer systems. Servers within data centers
can be considered as end devices, which provide services
accessed via the Internet.

Servers, storage equipment,
power and cooling equipment,
etc.

Undersea cable
High-bandwidth cable infrastructure connecting continents
and countries, often traversing very long distances. This is
sometimes grouped under Internet core.

Submarine communications
cable, amplifiers, etc.

IP core network

Internet Service Provider (ISP) equipment which form
regional, national, and global networks. This typically includes
equipment that uses Internet Protocol (IP), the principle
communications protocol which allows for the routing and
relaying of data across networks.

IP core/metro/edge switches and
routers, transmission link
elements (copper, fiber optic,
radio links, etc.), and supporting
infrastructure for cooling, power,
etc. (Malmodin et al. 2014)

Access network
Equipment connecting subscribers (or users) to ISPs, differing
from the core network, which connects servers to different
ISPs.

Routers, communications cable,
transmission and switching
equipment, etc. (including;
PSTN, xDSL, DSLAM, FTTx,
CATV, etc.)

Home/on-site networking
equipment

Also referred to as Customer Premise Equipment (CPE),
equipment used to access the Internet and provides a link to
the user’s edge device, based on the customer’s premise (e.g., in
the home or office building). Often used to maintain a
constant on-demand connection. Home/on-site networking
equipment can also form a Local Area Network (LAN).

Routers, modems, etc.

User device
Consists of the wide range of equipment a consumer may use
to draw a function from the Internet

Games consoles, PCs/laptops,
smartphones, tablets, etc. Any
connected device.

Note: PCs = personal computers.
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and data centers is highly variable, depending largely on the ser-
vice being provided (Coroama et al. 2015). These subsystems,
together with home/on-site networking equipment, also tend
to have low utilization and high “fixed” electricity use, making
estimates sensitive to assumptions on usage and the allocation
method used. This approach follows the argument of Coroama
and colleagues (2015), who suggest assessing user devices and
data centers separately to the transmission network “and to add
them up when needed—for example, for the assessment of the
energy needs of a specific service” (Coroama et al. 2015, 12).

Additionally, it was not possible to separate estimates for
undersea cable; we assumed therefore that removing their con-
tribution would have minimal impact (based on Malmodin et al.
[2014]). Where this is the case, we identify estimates would be
slightly lower (denoted by asterisk [“*”] symbol), had undersea
cable been subtracted.

The different methods used were also analyzed to see if they
affected the estimates derived. In addition, the year to which the
data apply, type of access networks, and technical assumptions
used were analyzed to determine their influence on results. From
this analysis, criteria were established for selecting representa-
tive estimates of electricity intensity for transmission networks
and then applied to review estimates for each study.

Results and Analysis

Estimates from the 14 studies are shown in table 2, ranging
from Baliga and colleagues (2009) estimate of 0.004 kWh/GB
for the year 2008; to the earliest identified estimate made
by Koomey and colleagues (2004), 136 kWh/GB for 2000
(later corrected by Taylor and Koomey [2008] to 92 to 160
kWh/GB). These authors also provide an estimate of 9 to 16
kWh/GB for 2006, using the same methodology. By contrast,
the most recent estimate for the year 2015 is 0.023 kWh/GB
(Malmodin and Lundén 2016). These results do not tell the full
story, however, as the system boundary differs greatly between
studies; from considering the IP core network only (Malmodin
et al. 2012); to several studies which included all subsystems,
from data centers to user devices (Costenaro and Duer 2012;
Malmodin et al. 2014).

Recalculating estimates to reflect a common system bound-
ary for transmission networks only (furthest right-hand column
in table 2) reduced some estimates by up to 2 orders of mag-
nitude. System boundary therefore has a substantial impact on
the estimate for electricity intensity. Results for the transmis-
sion network system boundary range from 7.3 kWh/GB for 2000
(Taylor and Koomey 2008) to 0.004 kWh/GB for 2008 (Baliga
et al. 2009). The effect of methods used, year to which the
data apply, characteristics of access networks, and technical
assumptions on results are evaluated in table 3.

Methods Used

We identified four different methods used across the 14 stud-
ies (shown in table 3); modeling, annual electricity consump-
tion (AEC), direct measurements, and extrapolation.

Modeling
Each study in table 2 could be considered to have mod-

eled the Internet in some way (through the need to simplify
the system due to the complexity and scale of the Internet).
However, here the modeling approach is a distinct method—
whereby equations based on parameters such as energy con-
sumption of equipment, usage, and data flow have been derived
to describe the Internet subsystems under study (requiring spe-
cific data inputs for the equipment used). For example, Baliga
and colleagues (2009) give a detailed mathematical approach
to estimating the electricity intensity of Internet data transmis-
sion and derive equations for the electricity intensity of each
subsystem of the Internet at different bandwidths. In this ex-
ample, the input data are based on a narrow range of power
consumption data for specific pieces of equipment and rely on
many assumptions for the characteristics of the network and
data traffic.

An advantage of modeling is that it may be used to make
future predictions for electricity intensity, or can be used to
estimate the impact of changes in specific variables (such as in-
creasing bandwidth). On the other hand, such models are highly
sensitive to input variable assumptions and boundary choices.
The input data from Baliga and colleagues (2009) is based on
the power ratings for specific pieces of equipment (which may
not accurately reflect equipment in use) and many assumptions
for variables such as energy efficiency and utilization, which can
lead to uncertainty in results. Costenaro and Duer (2012) model
the global Internet using top-down data based on Raghavan and
Ma (2011), which is also heavily based on such assumptions.

Schien and Preist (2014) combine the modeling approaches
of several researchers to develop a meta-model for different
subsystems of the Internet (Baliga et al. 2009; Van Heddeghem
et al. 2012). The model of Schien and Preist (2014) used input
data and the assumptions from several preceding studies (Baliga
et al. 2009; Coroama et al. 2013; Kilper et al. 2011), extrapo-
lating to a base year of 2014 by applying an improvement rate
of 12.5% per annum from Tamm and colleagues (2010). A pure
modeling approach is later taken for core networks by Schien
and colleagues (2014). These methods, however, are still heav-
ily dependent on the accuracy of the assumptions used, even
though the input data for equipment energy use are more com-
prehensive than Baliga and colleagues (2009) (e.g., using data
for many different servers, rather than a few specific examples).

Annual Electricity Consumption
AEC uses data on the power consumption, usage, and the

stock of existing equipment within a network to estimate total
energy used over a period. This approach typically uses estimates
for annual electricity consumption of equipment and divides by
estimated annual data traffic for the corresponding equipment.
This is the approach taken by Koomey and colleagues (2004),
which has been wrongfully categorized as a top-down approach
in previous articles. Koomey and colleagues (2004) use AEC
data for network equipment from Roth and colleagues (2002)
and divide these data by estimates for annual data flows. This
is the earliest attempt at estimating the electricity intensity
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Table 2 Original system boundary and published estimate for electricity intensity of Internet data transmission from relevant studies and
adjusted estimates of IEI considering a common system boundary of Internet core and access networks (highlighted)

System boundary (Internet subsystems) Estimate (kWh/GB)

Study

Year to
which data

apply
Data

centers
Undersea

cable
IP core
network

Access
networks

Home/on-site
networking
equipment

User
device

Original system
boundary

Transmission
network

[1] Koomey

et al. (2004)

2000
√ √ √

136 7.3a

[2] Taylor and
Koomey
(2008)

2000
√ √ √

92 to 160 6.5 to 7.1b

2006 9 to 16 0.65 to 0.71b

[3] Baliga et al.
(2009)

2008c √ √ √
0.17 0.17*

2008d 0.004 to 0.009 0.004* to 0.009*

[4] Weber et al.

(2010)

2008
√ √ √

7 �2.2e

[5] Coroama

et al. (2013)

2009
√ √ √

0.2 0.2*

[6] Williams

and Tang
(2012)

2010
√ √ √

0.3 0.013

[7] Malmodin

et al. (2012)

2010
√

0.08 —

[8] Malmodin

et al. (2014)

2010
√ √ √ √ √ √

2.48 0.16f

[9] Costenaro

and Duer
(2012)

2011
√ √ √ √ √ √

5.12 0.7*

[10] Shehabi

et al. (2014)

2011
√ √ √

0.29 0.11g

[11] Schien and

Preist (2014)

2011
√ √

0.02 0.02

[12] Krug et al.

(2014)

2012
√ √ √ √ √

7.2 0.14h

[13] Schien et al.

(2014)

2014i √ √
0.052 —

[14] Malmodin
and Lundén
(2016)

2015
√ √ √ √ √ √

— 0.023j

Notes: a) Calculated based on assumptions used in Koomey and colleagues (2004), see the Supporting Information available on the Journal’s website;
b) calculated based on assumptions used in Taylor and Koomey (2008), see the Supporting Information on the Web; c) estimate for low access rates; d)
estimate for high access rates; e) calculated based on same assumptions used by Weber and colleagues (2010); f) estimates taken directly from Malmodin
and colleagues (2014); g) calculated based on same assumptions used by Shehabi and colleagues (2014), see the Supporting Information on the Web; h)
calculated based on discussions with authors from Krug and colleagues (2014), see the Supporting Information on the Web; i) assumed year in which data
apply, although based on data from multiple source years; j) estimate provided by Malmodin (2016) based on data from Malmodin and Lundén (2016).
IP = Internet Protocol; kWh/GB = kilowatt-hours per gigabyte. The Asterisk [“*”] symbol denotes estimates where undersea cable could not be separated
from the system boundary.
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of transmission networks found in the peer-reviewed literature.
The advantage of using AEC data over the modeling approaches
described above is that it requires fewer assumptions and can
provide a more accurate representation (provided AEC data
are accurate). For example, assumptions for utilization factor
are not required as they are implicit in these estimates.

Direct Measurement
Another approach is to directly measure the power con-

sumption and data traffic of equipment within a network. The
study by Coroama and colleagues (2013) is based on measure-
ments of electricity use from equipment employed within the
specific data path for a single teleconference event. This elec-
tricity use was then divided by the data transfer rate for the
teleconference (40 megabits per second) and multiplied by the
time period of the event to determine the electricity inten-
sity of the network used for the teleconference. Coroama and
colleagues (2013) case study estimate of 0.2 kWh/GB is put
forward as “pessimistic” and the authors go on to state “that the
global average for the transmission electricity intensity must be
smaller than 0.2 kWh/GB” (Coroama et al. 2013, 6).

It is unlikely that a case study based on a specific network
path for a teleconference between Japan and Sweden can be
used as the basis of a representative average for transmission
network electricity intensity. Although the study is concerned
with data transmission equipment, the range of different types
of equipment used within a country-wide network is far greater
than those measured by Coroama and colleagues (2013). The
advantage of direct measurement is that it will always lead to
more accurate estimate than a modeled estimate. Taking direct
measurements for all equipment within the network, however,
is often infeasible due to the dynamic scale and complexity of
the Internet.

Extrapolation
Finally, some researchers extrapolate existing estimates, by

applying factors for changes in energy use of equipment or data
traffic, to derive an estimate for a different base year. Shehabi
and colleagues (2014) derive their estimate of electricity inten-
sity for 2011 by applying an energy efficiency improvement fac-
tor to the 2009 and 2010 based estimates made by Coroama and
colleagues (2013) and Malmodin and colleagues (2014) respec-
tively, then extrapolating. They apply a 20% improvement rate,
taken from Malmodin and colleagues (2014). The danger with
this approach is that the accuracy of extrapolations is strongly
dependent on the accuracy of the original estimates, as well
as that of the assumed rates of change for the projection. The
complexities of such approaches are discussed further below.

Combined Approaches
Several researchers combine different approaches.

Malmodin and colleagues’ (2014) estimate is made up of
both empirical data, with access to organizational data from
Swedish Internet Service Provider (ISP) TeliaSonera, and
energy measurements for several thousand network sites.
Malmodin and colleagues (2014) also developed energy

consumption models based on supplier energy use information
comprising a database of hundreds of thousands of network
equipment entities, which was aggregated and compared to the
value obtained from the site-level analysis (the same method is
used by Malmodin and Lundén [2016], who update their 2012
estimate for 2015).

Krug and colleagues (2014) similarly present an organiza-
tional model of network electricity use of the UK ISP, BT, based
on power measurements of sample equipment. The advantage of
combined approaches over that of Baliga and colleagues (2009)
is that Krug and colleagues (2014), Malmodin and colleagues
(2014), and Malmodin and Lundén (2016) are able to base
these models on inventories of actual equipment in use to rep-
resent the network, as well as using organizational site-level
data to corroborate estimates. They also use measurements of
total network data flows.

Previous research has suggested that top-down and bottom-
up approaches lead to over- and underestimations of results,
respectively. We found these classifications to be limiting as
they do not explain the actual methods used. Furthermore, the
method used is not a major cause of variability in estimates. In
fact, a combination of methods can be used to verify estimates,
as observed by Krug and colleagues (2014, 2): “an advantage of
our study is that we can use the top-down analysis to verify a
bottom-up analysis based on deployed equipment.” In addition,
the use of modeling and extrapolation approaches without data
validation must rely on assumptions, which can have higher
uncertainty and therefore data availability can be more limiting
with these methods.

More important than method used is the scale of network
considered; the studies in table 3 have either focused on specific
networks or network paths (e.g., Coroama et al. 2013), national-
level networks (e.g., Malmodin et al. 2014), or representations
of global network systems (e.g., Baliga et al. 2009). Estimates
based on data for equipment specific to a certain service, as
by Coroama and colleagues (2013), are limited and unlikely to
give representative estimates for average transmission network
electricity intensity.

Furthermore, studies should consider the full range of equip-
ment in use within the network under study. This includes
considering the legacy equipment within networks. Estimates
based on specific or state-of-the-art equipment, such as Baliga
and colleagues (2009), omit the less efficient legacy equip-
ment (i.e., equipment with higher electricity use per GB of
data transferred) in use within country-wide Internet networks,
resulting in a substantial underestimate of electricity intensity
at the lower end of the observed range (0.004 kWh/GB for
2008).

From this analysis of the methods used, the following criteria
are identified:

1. The approach used should at least provide representative
estimates of transmission networks at the national level.

2. Estimates should be based on data representative of the
range of equipment deployed in national-level networks
(i.e., including any legacy devices).
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Year to Which the Data Apply

Another important factor when considering existing esti-
mates is the year to which the data apply. It is important that
data underpinning an estimate are based on the same reference
year; or, adjusted to represent the year under study, using rea-
sonable and justified assumptions. Williams and Tang (2012)
estimate the carbon intensity (from which we have calculated
the electricity intensity) of data transmission for the year 2010,
based on data for equipment from 2005. There appears to be no
consideration for change in energy use of equipment from 2005
to 2010, which for multiple reasons presented below, could lead
to inaccuracy in the final result.

As discussed previously, several estimates extrapolate older
estimates and apply assumptions about the change in energy
use, data traffic, or efficiency of the Internet over time. For ex-
ample, an estimate for the year 2000 by Koomey and colleagues
(2004) is based on data for AEC estimates of network equip-
ment from Roth and colleagues (2002) (adjusted to account
for cooling, ventilation, and auxiliary equipment). Taylor and
Koomey (2008) subsequently corrected this estimate and de-
rived estimates for 2006 by applying actual growth factors for
equipment energy use from the U.S. Environmental Protection
Agency (US EPA) (2007). Weber and colleagues (2010) later
used the trend from 2000 to 2006 from Taylor and Koomey
(2008), extrapolating to estimate the electricity intensity of
data transmission for 2008.

Shehabi and colleagues (2014) also derive their esti-
mate of electricity intensity for 2011 by applying energy ef-
ficiency improvement factors to the 2009 and 2010 esti-
mates made by Coroama and colleagues (2013) and Malmodin
and colleagues (2014), respectively. The problems with ex-
trapolating results over time stem from the various con-
tributions to variability: technology improvement, renewal
of equipment, growth in usage, and major technological
shifts.

Technology Improvement
It is difficult to measure the rate at which the power con-

sumption of Internet technologies changes. Increased process-
ing power of equipment has in the past followed Moore’s law,
whereby every two years chip density doubles due to techno-
logical advances leading to increased number of transistors per
unit area (Koomey et al. 2011). Increased processing power can
lead to increased energy efficiency, as equipment is able to per-
form the same tasks with less energy expenditure (Koomey et al.
2011). Although Moore’s law has already slowed (Koomey and
Naffziger 2015, 2016), the energy efficiency of technology is
still expected to improve with gains expected from “improve-
ments to circuit design, component integration, and software,
as well as power-management schemes” (Koomey et al. 2014).
While the constraints on networking equipment efficiency are
somewhat different than those affecting general purpose com-
puting devices, the broader trends identified by Koomey and
colleagues (2011) and Koomey and Naffziger (2015, 2016) are
suggestive of the rates of change we would expect to see in

networking devices constructed from silicon microprocessors
and related components.

Renewal of Equipment
The impact of new technology on the electricity efficiency

of the network is dependent on the renewal rate, usually deter-
mined by the cost of amortization of capital equipment. His-
torically, the energy efficiency of computing equipment at peak
output doubled every 1.6 years to the year 2000 (Koomey et al.
2011) and then doubled every 2.6 years after 2000 (Koomey
and Naffziger 2015, 2016). Energy-use data for state-of-the-art
equipment alone should generally not be used as a basis for
calculations of electricity intensity of country-wide networks,
because this will leave the energy cost of legacy equipment
in the network (which is much less efficient than new equip-
ment) uncounted, as is the case for the estimate of Baliga and
colleagues (2009).

Growth in Data Flows
Data flows over Internet networks continue to grow rapidly

as more people utilize the Internet and as population and data
consumption per person increase. A white paper released by
Cisco (2015) predicts Internet traffic growth of 42% per year
to 2020. The increase in data use has also been coupled with
increases in the number of connected devices, a trend that is
likely to extend with the era of the “Internet of Things” (IEA
2014). This rapid growth requires ISPs to increase the capacity
of networking infrastructure (Krug et al. 2014), which puts
upward pressure on power consumption. As this growth is due
to multiple factors, it is difficult to model and extrapolate, so
such calculations should be closely tied to empirical evidence.

Major Technological Shifts
In addition, energy efficiency improvements can be hard

to predict due to the potential for technology shifts that do
not follow historical projections. Over long time periods, step
changes in technology can be observed. For the Internet, this
could be considered moving from technologies such as dial-up
to ADSL broadband or more recently from ADSL broadband
to fiber optic broadband, driven by demand for higher Internet
speeds. Updating estimates by applying factors for changes in
energy use, data traffic, or energy efficiency over time therefore
should be done cautiously and with full knowledge of recent
data on those trends.

The accuracy of any extrapolation will depend on the accu-
racy of predictions of trends in technology development, equip-
ment deployed, usage, and technological shifts. Any extrapola-
tion therefore must consider the potential of all these factors,
making use of industry roadmaps, in addition to past trends.
This leads to a third criterion:

3. If extrapolation is used, it should be based on analysis of
planned future technological development and improve-
ment over short periods (using industry roadmaps) rather
than past trends alone.
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Figure 2 Example of daily variation of Internet traffic in 2012, based on number of page views per 15-minute interval for part of the
Akamai network (Peill-Moelter 2012, reprinted with permission).

Access Networks

Access networks comprise many different types of equip-
ment, highlighted in table 1. The bandwidth a customer re-
ceives depends largely on their access network, with Fiber to
the node (FTTN) providing much higher average speeds than
ADSL (Baliga et al. 2009), for example. In table 2, the access
networks considered in each study range from specific, for exam-
ple, based on FTTN only (Coroama et al. 2013), to inclusive of
all access networks within national boundaries (Malmodin et al.
2014; Krug et al. 2014). Newer fiber optic access technologies,
such as FTTN, can provide more efficient data transmission,
with less electricity used per bit compared to older copper-based
technologies (e.g., ADSL). An estimate for average electricity
intensity should be inclusive of all access network types within
the network under study. The fourth criterion is therefore:

4. Estimates must be based on data inclusive of all access
network types within the network under study, based on
data flows through each network in a given year.

Technical Assumptions

Several technical assumptions are commonly used across
the studies; these assumptions therefore are compared below in
order to test their impact on the variability of estimates.

Utilization Factor
Utilization factor is the ratio of actual use to the total use

capacity of a network. Values for utilization factor applied in
the studies ranged from 15% (Schien et al. 2014) to 100%
(Baliga et al. 2009). Choice of utilization factor is linked to
the method used to derive the estimate. Comprehensive AEC
studies and direct measurements based on organizational data

do not require assumptions for utilization as the actual usage of
networking equipment is implicit within the result.

Internet networks at national scale exhibit diurnal usage
patterns, with peak periods of activity occurring in the evening,
as demonstrated in figure 2 (Peill-Moelter 2012).

ISPs provision networking infrastructure to provide band-
width capacity for peak usage, so, for most of the day, networks
are not utilized at maximum capacity. Some types of network-
ing equipment, such as access network and home routers, do
not typically scale energy use effectively with data traffic, con-
suming similar energy when in high and low use (Harrington
and Nordman 2014). An assumption of 100% utilization is not
representative of average transmission networks due to diurnal
usage patterns and therefore can lead to underestimates of elec-
tricity intensity. Likewise, electricity consumption during un-
derutilized times of day can be unaccounted for if estimates are
based on transmission time alone. Williams and Tang (2012)
follow this approach and their estimate is based on the product
of equipment power consumption and transmission time. The
electricity consumed to ensure the service can be provided at
all times of the day, for example, is therefore not included. This
could be a contributing factor to their estimate being an order
of magnitude lower than Malmodin and colleagues’ (2014) esti-
mate for the same year. In summary, lower values for utilization
factor, such as used by Schien and colleagues (2014), are more
likely to be representative of national-scale networks; this leads
to the next criterion:

5. a) Estimates for utilization must reflect the average diur-
nal usage exhibited in networks, that is, not 100%.

Power-Use Effectiveness
Power-use effectiveness (PUE) is a measure of energy effi-

ciency for network subsystem facilities, measured as the total
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energy used by the facility divided by the energy used by In-
formation Techonology (IT) equipment (i.e., servers, routers,
etc.). This factor provides a measure of energy efficiency of all
equipment required in the system, including equipment not di-
rectly used to provide computation, such as power provision
and cooling. Across 10 of the 14 studies, PUE ranges from 1.25
to 2.0. Shehabi and colleagues (2014) estimate PUE to be 1.3;
this represents a specific example using an efficient equipment
setup—the European Union (EU) code of conduct for data cen-
ters sets targets for best practice PUE of 1.2 or less (EC 2014).
It is unlikely such low estimates of PUE represent the average
for facilities within a national network.

Krug and colleagues (2014) and Malmodin and colleagues
(2014) are able to verify estimates for average PUE by compar-
ing modeling-based estimates, with empirical data for UK and
Swedish networks, respectively. If PUE is a required assump-
tion for estimates, we suggest a range for PUE of 1.8 to 2.0,
as presented in these studies, appears representative for cur-
rent typical Internet networks (although these values represent
those typical of data centers and there is still uncertainty and
further research required for estimating PUE of equipment in
core/access networks). Lower values for PUE are possible for
equipment used in specific services and average PUE of equip-
ment in the Internet network may improve in the future.

5. b) Where PUE is a required assumption, average values should
be between 1.8 and 2.0 in recent years (possibly higher for
estimates for the early 2000s and lower for more advanced
facilities).

Number of Hops
Number of hops is a measure of how many different nodes

data pass through in the data transmission network. Values for
number of hops ranged from 12 (Schien and Preist 2014) to 24
(Coroama et al. 2013) and is an assumption applied in 6 of the
14 studies. The relationship between the number of hops and
the final intensity estimate is not as clear as that for utilization
and PUE (which are multipliers) and varies between studies,
depending on the specific model. Assumptions for number of
hops could affect electricity intensity results; however, the mag-
nitude of this effect is unclear.

It is difficult to measure the average number of hops for
Internet use. Coroama and colleagues (2013) estimate hops for
a specific service, while Krug and colleagues (2014) are able to
corroborate their assumptions using BT organizational data for
the entire UK network. If an assumption for number of hops
is applied, estimates should be corroborated by empirical data
representative of the whole system.

5. c) Estimates for number of hops should be corroborated by
empirical data and be representative of data flows across the
whole network.

Applying the criteria identified above to each study (ta-
ble 3), the most representative estimates for the electricity in-
tensity of transmission networks (i.e., excluding data centers
and edge devices), shown in table 4, are: 6.5 to 7.1 kWh/GB for

2000 and 0.65 to 0.71 kWh/GB for 2006 (Taylor and Koomey
2008); 0.16 kWh/GB for 2010 (Malmodin et al. 2014), 0.14
kWh/GB for 2012 (Krug et al. 2014), and 0.023 kWh/GB for
2015 (Malmodin and Lundén 2016) .

Based on these results, trends in the electricity intensity of
transmission networks and findings relating to methodology are
discussed below.

Discussion

For the five studies that satisfy our criteria, the electricity
intensity of transmission networks has declined by factor of
�170 between 2000 and 2015. Krug (2016) estimates that the
electricity intensity of BT’s access networks has halved and
core network intensity has declined by a factor of 10 from 2012
to 2015. Updating Krug and colleagues’ (2014) 2012 estimate
using these assumptions gives a value for the electricity intensity
of data transmission of 0.06 kWh/GB for 2015 (based on BT
network in the UK). This estimate is similar to the updated
estimate for 2015 from Malmodin and Lundén (2016). These
results are displayed in figure 3, which shows the electricity
intensity of data transmission over the period observed to halve
approximately every 2 years (coefficient of determination, R2 =
0.98). Interestingly, this rate of improvement is somewhat faster
than post-2000 historical trends in the electrical efficiency of
computing at peak output observed by Koomey and Naffziger
(2015, 2016).

Also shown is an extrapolation of the observed trend past
2015, demonstrating the potential for the reduction of transmis-
sion network electricity intensity if this trend continues with
the same trajectory in the near future. Future research should
continue to make original estimates that satisfy the criteria out-
lined in this study, as the extrapolated trend is based on limited
data points and sensitive to the many variables discussed in
previous sections. Nevertheless, this regression can be used to
derive estimates of transmission network electricity intensity
for all years between 2000 and 2015, where data may not be
available from published studies.

Rather than using top-down or bottom-up methods, existing
studies were found to use four distinct methods (or combinations
of these) to estimate the electricity intensity of transmission
networks; modeling, AEC, direct measurement, and extrapola-
tion. The particular method used was not found to be a cause
of much variability in estimates, as previously suggested. The
variability observed in estimates can be attributed to differences
in system boundary between studies and methodological errors
including:

� Network studied not representative of entire Internet net-
work in terms of scale or technical assumptions.

� Extrapolations based on past trends alone, rather than
justified future predictions.

� Assuming 100% utilization is representative (in national-
level networks utilization is <100%).

� Not including data for all types of fixed-line access
networks.
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kWh/GB derived from Taylor and Koomey (2008) estimates for the year 2000; (2) median estimate of 0.65 to 0.71 kWh/GB derived from
Taylor and Koomey (2008) estimates for the year 2006; (3) estimate of 0.16 kWh/GB for 2010 derived from Malmodin and colleagues
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and Lundén (2016); and (6) estimate of 0.06 kWh/GB for 2015 is a new estimate proposed in this study, based on Krug and colleagues
(2014) with updated data for 2015 from Krug (2016). kWh/GB = kilowatt-hours per gigabyte.

Table 5 Possible consequential allocation methods for Internet en-
ergy intensity

Component Possible allocation method

Electricity used for
Internet service provided

Time (h) × Power Consumption
(W) × [Total Data Used (GB) /
Total Capacity (GB)]

Electricity used to power
unutilized data capacity
equipment

Should be allocated in
proportion to the share of peak
data capacity a particular service
uses at any point time

Note: W = watts; GB = gigabytes.

For future research, in the case that the Internet net-
work is considered an essential part of the system under study
(the foreground), then more specific understanding may be re-
quired on drivers of increased electricity use and a consequential
method of allocation (EC 2010) may be appropriate, for exam-
ple, based on weighted averages or marginal changes in elec-
tricity use and data flow. Possible approaches to consequential
allocation of electricity intensity are listed in table 5.

If networks were utilized at 100% capacity, allocation would
be based on average electricity intensity for both consequential
and attributional approaches. Electricity used directly to trans-
mit data for a particular service over time therefore should be
calculated as a function of time and data capacity used. Allo-
cating electricity used to power the unutilized network capacity
should then be distributed proportionally to those services re-
quiring peak data capacity—since it is these services that drive
ISPs to install additional capacity and bandwidth.

In future, networking equipment may scale its power con-
sumption with different levels of utilization and also enter more
power efficient idle modes when inactive (IEA 2014). Con-
sequently, allocation methods must be continually updated to
reflect changes in networking technology and energy perfor-
mance. Future research could examine consequential versus
attributional allocation for calculating electricity intensity of
transmission networks in more detail.

Conclusions

Existing estimates of Internet data transmission electricity
intensity have varied greatly since 2000. Following Coroama
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and Hilty (2014), system boundary can be a significant cause
of variation between estimates, together with the assumptions
applied. Contrary to previous studies, our analysis did not find
the methods used to be a substantial cause of variation between
estimates; rather, the treatment of time, methodological errors,
and boundary choices appear to be the major sources of un-
certainty. To avoid common errors in the future, estimates of
average transmission network electricity intensity should con-
sider the criteria identified above.

Estimates for average transmission network electricity inten-
sity that meet these criteria show a halving of intensity every 2
years. Our regression can be used to estimate Internet core and
access network electricity use for each year between 2000 and
2015, helping to resolve previous uncertainty in this area. More
research is required to update estimates for current and future
years, and improve certainty of estimates and trends.

In addition, future work is needed to refine consequential
methods of allocating the electricity intensity of transmission
networks for use in special cases. Attributional allocation will
likely remain the most pragmatic approach for use in LCA, so
estimating average electricity intensity will remain a priority
for research.
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